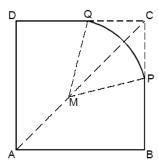
Mittlere-Reife-Prüfung 2009 Mathematik II Aufgabe A1


Aufgabe A1.

Die nebenstehende Skizze zeigt den Grundriss einer Duschwanne, welcher durch die Stre-

cken [QD], [DA], [AB] und [BP] sowie den Kreisbogen AB begrenzt wird.

Das Viereck ABCD ist ein Quadrat. Der Punkt M liegt auf der Diagonalen [AC] des Vierecks ABCD und ist der Mittelpunkt eines Kreises, der die Strecke [BC] im Punkt P und die Strecke [CD] im Punkt Q schneidet.

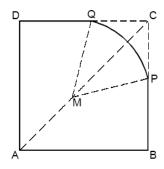
Es gelten folgende Maße: $\overline{AB}=90,0\,$ cm ; $\overline{BP}=\overline{QD}=50,0\,$ cm ; $\overline{MP}=\overline{MQ}=50,0\,$ cm.

Runden Sie im Folgenden auf eine Stelle nach dem Komma.

Aufgabe A1.1 (1 Punkt)

Berechnen Sie das Maß des Winkels PMC . [Ergebnis: $\angle \mathit{PMC} = 34,4^\circ$]

Aufgabe A1.2 (3 Punkte)


Berechnen Sie den Flächeninhalt A des Grundrisses der Duschwanne.

Lösung

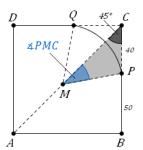
Aufgabe A1.

Die nebenstehende Skizze zeigt den Grundriss einer Duschwanne, welcher durch die Strecken [QD], [DA], [AB] und [BP] sowie den Kreisbogen $\stackrel{\frown}{AB}$ begrenzt wird. Das Viereck ABCD ist ein Quadrat. Der Punkt M liegt auf der Diagonalen [AC] des Vierecks ABCD und ist der Mittelpunkt eines Kreises, der die Strecke [BC] im Punkt P und die Strecke [CD] im Punkt Q schneidet.

Es gelten folgende Maße: $\overline{AB}=90,0\,$ cm ; $\overline{BP}=\overline{QD}=50,0\,$ cm ; $\overline{MP}=\overline{MQ}=50,0\,$ cm

Runden Sie im Folgenden auf eine Stelle nach dem Komma.

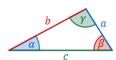
Aufgabe A1.1 (1 Punkte)


Berechnen Sie das Maß des Winkels PMC. [Ergebnis: $\angle PMC = 34,4^{\circ}$]

Lösung zu Aufgabe A1.1

Winkel bestimmen

Für diese Aufgabe sind folgende Angaben wichtig: $\overline{AB} = \overline{BC} = 90,0\,$ cm, $\overline{BP} = 50,0\,$ cm Betrachtet wird das Dreieck MPC.



Länge der Seite [PC] bestimmen:

$$\overline{PC} = \overline{BC} - \overline{BP} = 90, 0 - 50, 0 = 40, 0$$
 cm

Maß des Winkels PMC mit dem Sinussatz bestimmen:

Erläuterung: Sinussatz

In jedem Dreieck haben die Quotienten aus der Länge einer Seite und dem Sinuswert ihres Gegenwinkels denselben Wert. Es gilt:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

Im Dreieck PMC gilt somit:

$$\frac{\overline{PC}}{\sin \angle PMC} = \frac{\overline{MP}}{\sin \angle MCP} \iff$$

$$\frac{\sin \angle P \, M \, C}{\overline{P \, C}} = \frac{\sin \angle M \, C \, P}{\overline{M \, P}}$$

$$\begin{split} &\frac{\sin \angle P\,M\,C}{\overline{P\,C}} = \frac{\sin \angle M\,C\,P}{\overline{M\,P}} & | & \cdot \overline{P\,C} \\ &\sin \angle P\,C\,M = \frac{\sin \angle M\,C\,P \cdot \overline{P\,C}}{\overline{M\,P}} \end{split}$$

Erläuterung: Maß des Winkels MCP

Die Strecke $[A\,C]$ ist Diagonale des Quadrats $A\,B\,C\,D$ und teilt den 90°-Winkel bei Cin zwei 45° -Winkeln. Somit ist $\angle M\,C\,P=45^\circ.$

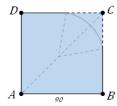
$$\sin \angle P C M = \frac{\sin 45^{\circ} \cdot 40}{50}$$

Erläuterung: Winkel berechnen

Um den Winkel $\angle PCM$ aus $\sin \angle PCM = \frac{\sin 45^{\circ} \cdot 40}{50}$ zu bestimmen, wird im Taschenrechner (TR) folgendes eingegeben:

TR:
$$\frac{\sin 45^{\circ} \cdot 40}{50} \rightarrow \text{SHIFT} \rightarrow \sin \frac{1}{2}$$

$$\Rightarrow \angle P C M = \sin^{-1} \left(\frac{\sin 45^{\circ} \cdot 40}{50} \right) = 34, 4^{\circ}$$


Aufgabe A1.2 (3 Punkte)

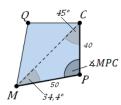
Berechnen Sie den Flächeninhalt A des Grundrisses der Duschwanne.

Lösung zu Aufgabe A1.2

Flächeninhalt eines Rechtecks

Gegeben ist die Seite $\overline{AB} = 90$ cm.

http://www.realschulrep.de/


Seite 6

Flächeninhalt des Quadrats ABCD bestimmen:

$$A_{ABCD} = \overline{AB}^2 = 90^2 \text{ cm}^2$$

Flächeninhalt eines Drachenvierecks

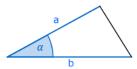
Gegeben sind die Länge der Seiten $\overline{MP}=50$ cm und $\overline{PC}=40$ cm und die Winkelmaße $\angle PMC=34,4^\circ$ und $\angle MCP=45^\circ$ (siehe Aufgabe A 1.1)

Maß des Winkels MPC bestimmen:

Erläuterung: Winkelsumme im Dreieck

Die Summe der Innenwinkel eines beliebigen Dreiecks ist immer gleich 180°.

Also hat der Winkel $\angle MPC$ eine Größe von $180^{\circ} - (\angle PMC + \angle MCP)$.


$$\angle MPC = 180^{\circ} - (\angle PMC + \angle MCP)$$

$$\angle MPC = 180^{\circ} - (34, 4^{\circ} + 45^{\circ})$$

$$\measuredangle M\,P\,C = 100,6^\circ$$

Flächeninhalt des Dreiecks MPC bestimmen:

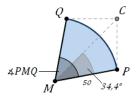
Erläuterung: Flächeninhalt eines Dreiecks

Sind in einem beliebigem Dreieck ABC zwei Seiten a und b und der Winkel α , der von beiden Seiten eingeschlossen wird, bekannt, so gilt für den Flächeninhalt A des Dreiecks: $A=\frac{1}{2}\cdot a\cdot b\cdot \sin\alpha$

$$A_{MPC} = \frac{1}{2} \cdot \overline{MP} \cdot \overline{PC} \cdot \sin \angle MPC$$

$$A_{MPC} = \frac{1}{2} \cdot 50, 0 \cdot 40, 0 \cdot \sin 100, 6^{\circ}$$

Flächeninhalt des Drachenvierecks MPCQ bestimmen:


$$A_{MPCQ} = 2 \cdot A_{MPC}$$

$$A_{MPCQ} = 2 \cdot \frac{1}{2} \cdot 50, 0 \cdot 40, 0 \cdot \sin 100, 6^{\circ}$$

$$A_{MPCQ} = 50, 0.40, 0.\sin 100, 6^{\circ}$$

Flächeninhalt eines Kreissektors

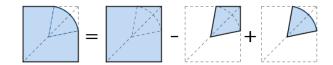
Gegeben ist der Radius $\overline{MP} = 50,0$ cm des Kreissektors MPQ und der Winkel $\angle PMC = 34,4^{\circ}$.

Flächeninhalt des Kreissektors MPQ bestimmen:

Erläuterung: Flächeninhalt eines Kreissektors

Der Flächeninhalt A eines Kreissektors wird gemäß der Formel

$$A = r^2 \cdot \pi \cdot \frac{\alpha}{360^{\circ}}$$


berechnet.

 $r^2 \cdot \pi$ ist der Flächeninhalt des ganzen Kreises.

 $\frac{\alpha}{360^{\circ}}$ gibt den Anteil des Kreissektors am ganzen Kreis an

$$A_{MPQ} = \overline{MP}^2 \cdot \pi \cdot \frac{\angle QMP}{360^{\circ}}$$

$$A_{MPQ} = 50, 0^2 \cdot \pi \cdot \frac{2 \cdot 34, 4}{360^{\circ}}$$

Flächeninhalt einer geometrischen Figur

Flächeninhalt A des Grundrisses der Duschwanne bestimmen:

$$A = A_{ABCD} - A_{MPCQ} + A_{PMQ}$$

$$A = 90^2 - 50, 0 \cdot 40, 0 \cdot \sin 100, 6^\circ + 50, 0^2 \cdot \pi \cdot \frac{2 \cdot 34, 4^\circ}{360^\circ}$$

$$\Rightarrow A \approx 7635, 1 \text{ cm}^2$$