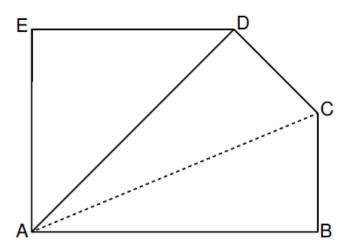
Mittlere-Reife-Prüfung 2020 Mathematik II Aufgabe B2


Aufgabe B2.

Nebenstehende Skizze zeigt das Fünfeck ABCDE, das aus dem Drachenviereck ABCD mit der Symmetrieachse AC und dem Dreieck ADE besteht.

Es gilt:

$$\overline{AB} = \overline{AD} = 11 \text{ cm}; \angle BAD = 45^{\circ}; \angle CBA = \angle ADC = \angle BAE = 90^{\circ}; [AB] \parallel [ED].$$

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

Aufgabe B2.1 (2 Punkte)

Zeichnen Sie das Fünfeck ABCDE sowie die Strecken [AD] und [AC].

Aufgabe B2.2 (3 Punkte)

Begründen Sie, weshalb $\angle EDC = 135^{\circ}$ und $\overline{AE} = \overline{ED}$ gilt. Berechnen Sie sodann die Länge der Strecke [ED].

[Teilergebnis: $\overline{ED} = 7,78 \text{ cm}$]

Aufgabe B2.3 (4 Punkte)

Berechnen Sie die Länge der Strecke [BC] und den prozentualen Anteil des Flächeninhalts des Drachenvierecks ABCD am Flächeninhalt des Fünfecks ABCDE.

[Teilergebnis: $\overline{BC} = 4,56 \text{ cm}$]

Aufgabe B2.4 (2 Punkte)

Auf der Strecke [AE] liegen Punkte S_n , für die gilt: $\overline{\mathrm{ES}_n}(x) = x$ cm mit $x \in \mathbb{R}, x \in]0; 7, 78[$. Punkte R_n liegen auf dem Kreisbogen $\stackrel{\frown}{\mathrm{AD}}$ mit dem Mittelpunkt E. Ferner gilt: $[\mathrm{S}_n\mathrm{R}_n] \parallel [\mathrm{ED}]$.

Zeichnen Sie den Kreisbogen AD und die Strecke $[S_1R_1]$ für x=2 in die Zeichnung zu B 2.1 ein.

Aufgabe B2.5 (3 Punkte)

Der Punkt R_2 ist der Schnittpunkt des Kreisbogens $\stackrel{\frown}{\mathrm{AD}}$ mit der Symmetrieachse AC des Drachenvierecks ABCD.

Ergänzen Sie die Zeichnung zu B 2.1 um das Dreieck S_2R_2E und berechnen Sie die Länge der Strecke $[S_2R_2]$.

[Zwischenergebnis: $\angle R_2AE = \angle ER_2A = 67,5^{\circ}$]

Aufgabe B2.6 (3 Punkte)

Die Bogenlänge b des Kreisbogens R_3D mit dem Mittelpunkt E beträgt 3 cm . Berechnen Sie das Maß des Winkels R_3ED und den zugehörigen Wert für x.