
Mittlere-Reife-Prüfung 2021 Mathematik II Aufgabe A2

Aufgabe A2.

Gegeben sind die Parabel p mit der Gleichung $y=0,25x^2-3x+8$ und die Gerade g mit der Gleichung y=-0,25x+6,5. Es gilt: $\mathbb{G}=\mathbb{R}\times\mathbb{R}$.

Die Punkte A und B sind die Schnittpunkte der Parabel p und der Gerade g. Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

Aufgabe A2.1 (3 Punkte)

Berechnen Sie die Koordinaten der Punkte A und B.

Aufgabe A2.2 (2 Punkte)

Punkte P_n $(x|0, 25x^2 - 3x + 8)$ auf p und Punkte Q_n (x|-0, 25x + 6, 5) auf g haben dieselbe Abszisse x. Für die Strecken $[P_nQ_n]$ gilt: $y_{Q_n} > y_{P_n}$. Die Mittelpunkte M_n der Strecken $[P_nQ_n]$ sind zugleich Mittelpunkte von Kreisen k_n mit den Durchmessern $\overline{P_nQ_n}$. Zeichnen Sie die Strecke $[P_1Q_1]$ sowie den Mittelpunkt M_1 und den Kreis k_1 mit dem Durchmesser $\overline{P_1Q_1}$ für x=7 in das Koordinatensystem zu A 2. ein.

Aufgabe A2.3 (1 Punkt)

Zeigen Sie rechnerisch, dass für die Länge der Strecken $[P_nQ_n]$ in Abhängigkeit von der Abszisse x der Punkte P_n gilt: $\overline{P_nQ_n}(x) = (-0, 25x^2 + 2, 75x - 1, 5)$ LE

Aufgabe A2.4 (2 Punkte)

Unter den Kreisen k_n gibt es einen Kreis k_0 mit maximalem Umfang u_{max} . Berechnen Sie u_{max} .

Aufgabe A2.5 (2 Punkte)

Ein Kreis k_3 hat den 4-fachen Durchmesser eines Kreises k_2 . Hat k_3 dann den 16-fachen Flächeninhalt von k_2 ? Begründen Sie Ihre Antwort.