
Mittlere-Reife-Prüfung 2019 Mathematik II Aufgabe B1

Aufgabe B1.

Untenstehende Skizze zeigt das Trapez ABCD. Es gilt:

$$\overline{AB} = 7 \text{ cm}; \overline{BC} = 10 \text{ cm}; \overline{AC} = 14 \text{ cm};$$

 $\angle CAD = 50^{\circ}; AB \parallel CD.$

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

Aufgabe B1.1 (4 Punkte)

Zeichnen Sie das Trapez ABCD und berechnen Sie das Maß β des Winkels CBA sowie das Maß ε des Winkels BAC.

[Ergebnisse: $\beta = 109, 62^{\circ}; \, \varepsilon = 42, 28^{\circ}$]

Aufgabe B1.2 (3 Punkte)

Die Strecke [BP] ist die kürzeste Verbindung des Punktes B zur Strecke [AC]. Ergänzen Sie in der Zeichnung zu B 1.1 die Strecke [BP]. Berechnen Sie sodann den Umfang u des Dreiecks ABP.

Aufgabe B1.3 (3 Punkte)

Berechnen Sie den Flächeninhalt A des Trapezes ABCD.

[Ergebnis: $A = 83, 51 \text{ cm}^2$]

Aufgabe B1.4 (3 Punkte)

Der Kreis k mit dem Mittelpunkt M berührt die Strecke [AC] im Punkt E und die Strecke [AD] im Punkt F. Für den Radius r gilt: $r = \overline{\text{ME}} = \overline{\text{MF}} = 2$ cm.

Ergänzen Sie in der Zeichnung zu B1.1den Kreis kmit dem Mittelpunkt M. Berechnen Sie sodann den prozentualen Anteil des Fla¨cheninhalts des Kreises kam Fla¨cheninhalt des Trapezes ABCD.

Aufgabe B1.5 (4 Punkte)

Berechnen Sie den Flächeninhalt der Figur, die durch die Strecken [AE] und [AF] sowie den Kreisbogen $\stackrel{\frown}{\mathrm{FE}}$ mit dem zugehörigen Mittelpunkt M begrenzt wird.