R4

2 P

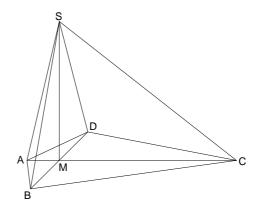
an den Realschulen in Bayern

Mathematik II Haupttermin Aufgabe C 2

C 2.0 Die nebenstehende Skizze zeigt ein Schrägbild der Pyramide ABCDS, deren Grundfläche das Drachenviereck ABCD mit den Diagonalen [AC] und [BD] ist. Die beiden Diagonalen schneiden sich im Punkt M mit $\overline{AM} = 2$ cm.

Die Spitze S der Pyramide ABCDS liegt senkrecht über dem Punkt M.

Es gilt:
$$\overline{AC} = 13 \text{ cm}$$
; $\overline{BD} = 10 \text{ cm}$;
 $\overline{SC} = 14 \text{ cm}$.



Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

C 2.1 Zeichnen Sie das Schrägbild der Pyramide ABCDS, wobei die Diagonale [AC] auf der Schrägbildachse liegen soll.

Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$.

Berechnen Sie sodann das Maß γ des Winkels SCA und die Länge der Pyramidenhöhe [MS].

[Ergebnisse:
$$\gamma = 38,21^{\circ}$$
; $\overline{MS} = 8,66 \text{ cm}$]

C 2.2 Punkte $E_n \in [SA]$, $F_n \in [SB]$, $G_n \in [SC]$ und $H_n \in [SD]$ sind die Eckpunkte von Drachenvierecken $E_nF_nG_nH_n$. Die Diagonalen $[E_nG_n]$ und $[F_nH_n]$ der Drachenvierecke $E_nF_nG_nH_n$ schneiden sich in den Punkten P_n und verlaufen jeweils parallel zu den Diagonalen [AC] und [BD] des Drachenvierecks ABCD.

Es gilt: $\overline{SG_n} = x \text{ cm mit } x < 14; x \in \mathbb{R}^+.$

Die Punkte E_n , F_n , G_n und H_n und der Punkt $R \in [AC]$ mit $\overline{RC} = 8$ cm legen Pyramiden $E_nF_nG_nH_nR$ fest. Punkte N_n auf den Geraden E_nG_n sind die Fußpunkte der Pyramidenhöhen $[N_nR]$.

Zeichnen Sie für x=7,5 die Pyramide $E_1F_1G_1H_1R$ und ihre Höhe $[N_1R]$ in das Schrägbild zu 2.1 ein.

C 2.3 Berechnen Sie die Länge der Seitenkante [RG1] und das Maß ϵ des Winkels CRG1. [Ergebnis: ϵ = 54,31°] 4 P

C 2.4 Ermitteln Sie das Volumen der Pyramide $E_1F_1G_1H_1R$ durch Rechnung. [Teilergebnis: $\overline{N_1R} = 4,02$ cm] 5 P

C 2.5 Das Volumen der Pyramide $E_2F_2G_2H_2R$ ist halb so groß wie das Volumen der Pyramide $E_2F_2G_2H_2S$.

Begründen Sie, dass die Höhe der Pyramide $E_2F_2G_2H_2R$ folglich halb so lang wie die Höhe der Pyramide $E_2F_2G_2H_2S$ ist.