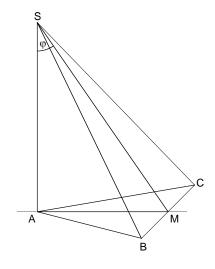
Prüfungsdauer: 150 Minuten

Abschlussprüfung 2006

an den Realschulen in Bayern


R4/R6

Mathematik II

Wahlteil - Haupttermin

Aufgabe B 2

B 2.0 Die nebenstehende Skizze zeigt ein Schrägbild der Pyramide ABCS, deren Grundfläche ein gleichseitiges Dreieck mit der Dreieckshöhe $\overline{AM} = 4 \cdot \sqrt{3}$ cm ist. Die Spitze S der Pyramide liegt senkrecht über dem Punkt A der Grundfläche mit $\overline{AS} = 10$ cm. Der Winkel ASM hat das Maß ϕ .

B 2.1 Zeigen Sie durch Rechnung, dass gilt: $\overline{BC} = 8 \text{ cm}$ und $\varphi = 34,72^{\circ}$.

2 P

B 2.2 Zeichnen Sie das Schrägbild der Pyramide ABCS, wobei [AM] auf der Schrägbildachse liegen soll.

Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$

2 P

B 2.3 Auf der Strecke [MS] liegt der Punkt Q mit $\overline{MQ} = 6 \text{ cm}$. Punkte P_n liegen auf der Seitenkante [AS] und bilden zusammen mit den Punkten Q und S Dreiecke P_nQS . Unter den Dreiecken P_nQS gibt es ein rechtwinkliges Dreieck P_1QS mit der Hypotenuse [QS].

Zeichnen Sie das Dreieck P_1QS in das Schrägbild zu 2.2 ein und berechnen Sie sodann die Länge der Strecke $[SP_1]$. (Auf zwei Stellen nach dem Komma runden.)

[Teilergebnis: SM = 12,17 cm]

4 P

B 2.4 Das Dreieck P₂QS ist gleichschenklig mit der Seite [QS] als Basis.

Zeichnen Sie das Dreieck P₂QS in das Schrägbild zu 2.2 ein und berechnen Sie sodann auf zwei Stellen nach dem Komma gerundet die Länge des Schenkels [P₂Q].

3 P

B 2.5 Für den Punkt P₃ hat der Winkel P₃MA das Maß 20°.

Zeichnen Sie das Dreieck BCP₃ in das Schrägbild zu 2.2 ein und zeigen Sie sodann dass der Flächeninhalt 29,48 cm² beträgt. (Auf zwei Stellen nach dem Komma runden.)

3 P

B 2.6 Das Dreieck BCP $_3$ ist die Grundfläche der Pyramide BCP $_3$ Q mit der Spitze Q. Zeichnen Sie die Pyramide BCP $_3$ Q und die zugehörige Höhe [FQ] mit dem Höhenfußpunkt F auf der Strecke [P $_3$ M] in das Schrägbild zu 2.2 ein.

Berechnen Sie sodann das Volumen der Pyramide BCP₃Q.

3 P